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Introduction

Dynamic Signal Analyzers (DSAs)
represent a new generation of mi-
croprocessor-based test instru-
ments designed to support the
development of control systems.
By combining the computational
resources of microprocessors
with the accuracy of precision
measurement hardware, DSAs
combine high-performance mea-
surements and powerful com-
puter-aided-engineering. By
consolidating this much power
into a single instrument, DSAs
have expanded the role of test
instruments beyond traditional
testing functions to include
contributions in the areas of
modeling, design and analysis.

The purpose of this application
note is to examine how the ad-
vanced measurement and analysis
capabilities of a DSA can be
applied to the development and
production of control systems to
reduce testing time, reduce analy-
sis time, provide more informa-
tion from measurements and,
in general, enhance the overall
development and production
process.

Using This Application Note

This application note is designed
for both the experienced control
systems engineer who may be un-
familiar with DSAs and the expe-
rienced DSA user entering the
field of control systems. To ac-
commodate this broad range of
readers, the note is divided into
two parts.

Part 1 is a review of the basic
concepts associated with control
systems and linear control theory.
This section serves as a general
resource and may be considered
optional reading for the experi-
enced control system engineer.

Part 2 is an introduction to the
features and functions of DSA’s
which directly contribute to the
development of control systems.
Each feature or function is briefly
described with example applica-
tions provided.

A glossary of control system
terms is provided in Appendix A.
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Chapter 1: Basic Terms
and Definitions

A control system has been
formally described as, “A system
in which deliberate guidance or
manipulation is used to achieve a
prescribed value of a variable.”1

With a variable further defined as,
“a quantity or condition which is
subject to change,” it becomes
apparent that the components of
a control system may be virtually
any definable entity, be it electri-
cal, mechanical, biological,
organizational or otherwise.

The human circulatory system,
pacemakers, motor speed con-
trols, clothes dryers, automobile
cruise controls and voltage regu-
lators are a few examples of the
vast number of control systems in
existence.  The diversity of con-
trol systems may at first seem a
barrier against the development
of a common analysis and design
strategy.  Fortunately, if the com-
ponents of a system can be repre-
sented through a common
mathematical symbolism, then
there exists a collection of con-
cepts and methods for studying
the physical properties of control
systems known as control theory.

Part 1:
An Introduction to Control Systems
and Classical Control Theory.

While a thorough study of control
theory is far beyond the scope of
this application note, the follow-
ing paragraphs present the basic
concepts associated with classic
control theory as applied to con-
tinuous linear control systems.2

To categorize control systems
with common traits or functions,
several subclasses of control sys-
tems have been defined.  One of
the basic categories of control
systems are those systems which
operate without human interven-
tion.  Control systems in this cat-
egory are called automatic control
systems.  An example of an auto-
matic control system is an auto-
mobile cruise control which
maintains the speed of the vehicle
without attention from the driver.
If the driver disengages the cruise
control, he then becomes part of
the control system regulating the
speed of the car and, therefore,
part of a nonautomatic control
system.

Another category involves those
automatic control systems which
involve mechanical motion as the
controlled variable.  These con-
trol systems are called servo-
mechanisms (commonly referred
to as servos) and are defined as,
“An automatic feedback control
system in which the controlled
variable is mechanical position or
any of its time derivatives.” While
this definition seems straightfor-
ward, general usage has diluted
the literal meaning to include
virtually any electronic, electro-
mechanical or mechanical
control system.

Control systems are also catego-
rized as being either open-loop or
closed-loop.  The difference be-
tween these two categories, the
use of feedback, becomes easier
to understand when viewing the
basic model of a control system.
Formal definitions of open-loop
and closed-loop control systems
have therefore been incorporated
into the following chapter on con-
trol system modeling.

1 American National Standards Institute
specification MC85.1M-1981, Terminology

for Automatic Control.

2 References for further study of modern or
classic control theory as applied to linear,
nonlinear, continuous and discrete control
systems are listed at the end of this note.
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The first step in the design or
analysis of a control system is to
develop an analytical model of the
system.  This is done by dividing
the control system into functional
blocks.  Each block may repre-
sent any portion of the control
system from an individual compo-
nent to a group of components
which perform an identifiable
function.

2-1: The Open-Loop Model

Figure 1-1A is a block diagram
which represents a very basic
control system.  The letters r and
c represent the directly controlled
variable and the reference input
respectively.  The letter g repre-
sents an equation which describes
the influence of the elements
within the functional block on a
signal or action compared at the
input and output of the functional
block.  All lower case letters
generally denote functions in the
time domain unless otherwise
specified (for example, c = c(t)).
The upper case variables R and C
in Figure 1-1A represent the
Laplace transform of r and c
expressed as functions of the

complex variable s1.  The upper
case G represents the Laplace
transform of g and is generally
referred to as a transfer function2.

A simple example of the type
of control system shown in
Figure 1-1A is a potentiometer
connected as a voltage divider,
as shown in Figure 1-1B.  For this
example the reference input R
would have units of radians, the
directly controlled variable C
units of volts, and the transfer
function G would be a constant

with units of volts per radian (as
shown in Figure 1-1C).  A draw-
back of this type of a control
system is its inability to respond
to dynamic changes in the system.
For example, if a load resistance
was connected to the output,
there would be an undesirable
change in the output voltage.
This type of control system,
which cannot take corrective
action to alleviate undesirable
changes of the directly controlled
variable, is called an open-loop
control system.

1 In general, capital letters denote trans-
formed quantities.  The quantities may be
either Laplace transformed as a function
of the complex variable s, (e.g., G(s)), or
Fourier transformed as a function of the
frequency variable jω, (e.g., G(jω)).
Functions of s are generally abbreviated
to their capital letter only (i e., G(s) is
abbreviated to G).  Functions of jω,
however, are never abbreviated.

2 A transfer function is defined as the ratio
of the Laplace transform of the output to
the Laplace transform of the input in the
absence of all other signals, and with all
initial conditions zero.   Input and output
refer to the signals or variables applied to
and delivered from a system or element,
respectively.

Figure 1-1:

A. Control system

block diagram

(open-loop).

Chapter 2: Modeling

R
Radians

Volts
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C
Volts

R
r

G
g

C
c

G

R =  Function with units of Radians
G =  Transfer function with units of Volts/Radian
C =  Function with units of Volts

ω

+ 15V

Vout

B. Control system

corresponding to

block diagram of

Figure 1A.

C. Detailed

block diagram of

control system

shown in

Figure 1B.
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Figure 1-2:
2-2: The Closed-Loop Model

Another basic form of control
system is shown in Figure 1-2A.
In this system the output C is fed
back through a functional block
with a feedback transfer function
H and compared to the reference
signal R via a summing junction.
The signal resulting from the dif-
ference between R and the feed-
back signal B is called the error
or actuating signal E.  The princi-
pal advantage of this form of sys-
tem is that any change in C, with
R remaining constant, causes a
change in E, (E = R - B = R - CH).
If the system is operating prop-
erly, the change in E forces C to
return to the point where the
value of B approaches the value
of R.  The effect is that the output
is maintained at a desired value
despite disturbances to the sys-
tem.  This type of control system
is called a closed-loop control
system and is defined as any con-
trol system in which the directly
controlled variable has an effect
upon the input quantity in such a
manner as to maintain the desired
output level.

A. control system

block diagram

(closed-loop).

B. Control system

corresponding to

block diagram of

Figure 1-2A.
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1

M
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E
Pressure

B
Pressure

+R
Pressure Σ

H

C
PressureG1

Sliding Valve

C. Detailed block

diagram of control

system shown in

Figure 1-2B.
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An example of this second form
of control system is illustrated by
the pressure regulator shown in
Figure 1-2B.  The objective of this
system is to adjust the pressure in
Tank 2 (P

2
) until it is equal to the

pressure in Tank 1 (P
1
).

Figure 1-2C is one possible
block diagram for this system.
In this block diagram the function
of the differential pressure actua-
tor is represented by a summing
junction and a forward transfer
function G

1
.  The action of the

sliding valve is then represented
by the forward transfer function
G

2
.  A perfectly valid alternative

would be to combine G
1
 and G

2

1 Figure 1-3 is adapted from the American
National Standard ANSI MC85.1M1981,
Terminology for Automatic Control.

into a single forward transfer
function G.  The resultant block
diagram would then have the
same form as Figure 1-2A.

This control system is also an
example of a system in which the
controlled variable is fed back to
the summing junction without any
modification; the transfer func-
tion, H, is simply equal to 1.  This
type of control system is called a
unity feedback control system.

A general block diagram illustrat-
ing most of the elements of an
automatic closed-loop control
system is shown in Figure 1-31.

Forward
Controlling
Elements

Reference
Input
Elements

Indirectly
Controlled
System

Directly
Controlled
System

Feedback
Elements

Reference
Input Signal

Summing Point
Actuating
Signal

Manipulated
Variable

Disturbance* Indirectly
Controlled
Variable

Directly
Controlled
Variable

Command

Feedback
Signal

V

A

R E

G1

M

G2

C

Z

Q

B

H

Idealized
System

Ideal Value
I

Controlled
System

Controlling
System

* May occur at any
place in the system

Σ
+

Figure 1-3:

Block diagram

of automatic

control system.
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The primary objective in
designing a control system is to
construct a system that achieves
the desired output level as fast
as possible and maintains that
output with little or no variation.
One of the first techniques
developed to measure a control
system’s compliance with
these design goals was the
step response.

3-1: Time Domain Performance

Step Response

The step response is the mea-
sured reaction of the control
system to a step change in the
input.  A typical step response
and its associated parameters
are illustrated in Figure 1-41.  The
step response has several favor-
able characteristics which have
maintained its universal accep-
tance and popularity:

• the step stimulus is easy
to generate

• the stimulus is easily modeled
[u(t)] making the solution to
the differential equation (used
to predict the system’s time
domain response) much less
complicated

• several measurement techniques
are available for recording the
time domain response to the step
input

• key aspects of the control
system’s performance can be
derived from the step response.

Chapter 3:
Measuring Performance

Figure 1-4:

Typical time

response of a

system to a

step increase

of input.

1 Figure 1-4 is adapted from the American
National Standard ANSI MC85.1M-1981,
Terminology for Automatic Control.
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There are several measures
of performance which can be
derived from the step response.
The rise time of the step response
provides a measure of how fast a
system can initially achieve the
desired output level.  The maxi-
mum overshoot (shown in Figure
1-4 in terms of either peak value
or maximum value of transient
deviation) provides a relative
measure of the maximum output
level resulting from a specific in-
put.  The steady-state deviation
indicates a constant error in
achieving a desired output.  Set-
tling time, perhaps the most sig-
nificant parameter, is a measure
of how long it takes the system to
settle to its steady-state value.

If the system never settles to its
steady-state value (for example, it
constantly oscillates about a de-
sired output), the system is con-
sidered unstable.  Taken one step
further, the settling time can be
interpreted as a relative measure
of stability, with a short settling
time considered more stable than
a long settling time.

In addition to the step response,
there were two other early stimu-
lus signals: the ramp function
[tu(t)] and the parabolic function
[t2u(t)].  These signals provided
the same simplicity in modeling
as the step response and also
provided a means of measuring a
control systems ability to track
dynamic signals.

3-2: Frequency Domain

Performance

The time domain responses to the
step, ramp and parabolic forcing
functions were the only univer-
sally accepted techniques for
measuring the performance of a
control system until the early
1930s.  It was during this period
that three Bell Laboratories scien-
tists, H.S. Black, H.W. Bode and
H. Nyquist, were doing pioneering
work on the characterization of
control systems in the frequency
domain.  In an attempt to provide
amplifiers with better linearity,
Black began a rigorous study of
the effects of negative feedback
on electronic amplifiers (a basic
form of automatic closed-loop
control system).  Early experi-
ments resulted in several observa-
tions including improved linearity
and, in some cases, unexpected
oscillations in the amplifier’s out-
put.  It was the unexpected oscil-
lations which inspired Nyquist to
study the cause of such instabili-
ties in closed-loop control sys-
tems.  From his studies, Nyquist
discovered that the stability of a
closed-loop system could be de-
termined from a simple frequency
response plot.  Before discussing
Nyquist’s discovery, it is helpful
to review a few of the basic
definitions and concepts associ-
ated with the frequency domain
aspects of a control system.

3-2.1: Frequency Domain

Terms and Definitions

One of the most important trans-
fer functions associated with a
closed-loop control system relates
the directly controlled variable C
to the reference input.  The ratio
C/R is referred to as either the
control ratio or the closed-loop
transfer function; this note refers
to it as the latter.  By solving for
C/R in terms of G and H we have:
C/R = G/(1 + GH), as shown in
Figure 1-5.  As previously men-
tioned, capital letters with no
subscripts represent transformed
quantities expressed as a function
of s.  The closed-loop transfer
function can therefore be
expressed as:

C (s) G(s) G(s)

R(s) 1 + G(s) H(s) 1 + GH(s)

Important values of s are those
values which set the numerator
and/or denominator of the closed-
loop transfer function equal to
zero.  Values of s which set the
numerator to zero are called zeros
of the closed-loop transfer func-
tion or closed-loop zeros.  Values
of s which set the denominator
equal to zero (i.e., s such that
1 + GH(s) = 0) are called poles of
the closed-loop transfer function
or closed-loop poles.

At this point it is important to
note that the complex variable s
can be further expressed in terms
of the variables σ and jω.  That is,
s = σ + jω where σ represents the
real or damping component of s,
and jω represents the imaginary
or frequency component of s.

==
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A common tool used to study
control systems is a graph called
the s-plane.  The s-plane is a
two-dimensional Cartesian graph
which represents values of s.  The
ordinate of the s-plane represents
the imaginary part of s (i.e., jω),
and the abscissa represents the
real part of s (i,e., σ).  If values of
s which constitute the closed-loop
poles are plotted with X’s on the
s-plane and the values which
constitute closed-loop zeros are
plotted with 0’s, the result is a
pole/zero plot of the closed-loop
transfer function as shown in
Figure 1-6.

When the magnitude of the
closed-loop transfer function
is plotted as a third axis of the
s-plane, the effects of the poles
and zeros on the magnitude of the
closed-loop transfer function at
any value of s can be quickly
realized as shown in Figure 1-7.

Figure 1-7 shows only the left half
of the s-plane to illustrate the
contour of |C/R| for values of s
along the jω axis (i.e., for values
of s equal to 0 + jω).  This con-
tour is significant in that it repre-
sents the same curve produced by
evaluating the magnitude of the
Fourier transform of c divided
by the Fourier transform of
r for positive values of (i.e.,
|C(jw)/R(jω)| for values of ω ≥ 0).
Therefore, this contour also rep-
resents the gain-versus-frequency
plot obtained by physically
measuring the gain of a control
system between its input
and output.

G

H

CE

B

+
R

Σ

C = EG
E = R - B
B = CH
Solving for C in terms of
C, G, H and R we have:
C = RG - BG
C = RG - CHG

RG
1 + GH

C =

Solving for      we have:C
R

C
R

G
1 + GH

=

Figure 1-5:

Solving for

C/R in terms

of G and H.

Pole

Zero

s-plane

jω

σ

Figure 1-6:

Pole/zero plot

for the closed

loop transfer

function

G(s)

1 + G(s)H(s).
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A similar diagram can be
drawn for the phase of C(s)/R(s)

as shown in Figure 1-8.  Again
the contour presented by the
values of ∠C(s)/R(s) along
the s = 0 + jω axis represent
∠C(jω)/R(jω) for positive values
of ω.  This contour also repre-
sents the phase-versus-frequency
plot obtained by physically mea-
suring the phase shift of a control
system between its input and
output.

The information provided by
the highlighted contours in
Figures 1-7 and 1-8 represents
the frequency-dependent relation
between steady-state sinusoidal
input signals (R(jω)) and the
resulting steady-state sinusoidal
output signals (C(jω)), that is,
they represent the frequency
response of the device
characterized by C/R.

For transfer functions in general,
the information produced by
evaluating the Fourier transform
for all values of jω can be re-
garded as a subset of the overall
contour produced by evaluating
the Laplace transform for all val-
ues of s.  The Fourier transform
of a transfer function evaluated
for positive values of ω also rep-
resents the physically measured
gain and phase relationship (i.e.,
frequency response) between the
input and output of the device
modeled by the transfer function.

Figure 1-7:

Magnitude

plot of

G(s)

1 + GH(s)

versus values

of s.

C(s)
R(s)

jω

σ

Figure 1-8:

Phase plot of

G(s)

1 + GH(s)

versus values

of s.

C(s)
R(s)

jω

σ
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3-2.2: Nyquist’s Stability

Criterion (s-plane)

With the evaluation of transfer
functions over the s-plane well
established, the fundamental
condition for stability discovered
by Nyquist, can now be presented.
Simply stated, for a control sys-
tem to be stable, there can be no
closed-loop poles in the right half
of the s-plane.  (Poles on the jω
axis are not directly addressed
but are generally considered to
represent instability.)  This rela-
tionship between closed-loop pole
locations and system stability
constitutes Nyquist’s Stability Cri-
terion as applied to the s-plane.
This relationship can be ex-
tremely useful in predicting the
stability of a system if the posi-
tion of each closed-loop pole is
known.  Trying to determine the

exact location of closed-loop
poles from measured data without
a computer, however, can often
be a difficult task.  Fortunately,
Nyquist’s original work included
a very useful technique for evalu-
ating the presence of closed-loop
poles in the right-half plane with-
out necessarily knowing their
exact locations.  To examine
this technique closely, however,
we will need a few more terms
and definitions.

In the preceding paragraphs it
was established that the roots of
the equation 1 + GH(s) = 0 (i.e.
values of s for which GH(s) = -1)
were the closed-loop poles and
the sole factor in determining if
the system would be stable.
Because of its influence on the

stability of the system and, ulti-
mately, the character of the time
domain response, the equation
1 + GH(s) = 0 is known as the
characteristic equation.

From the characteristic equation
it is apparent that the term GH(s)

contains all the information
concerning the location of the
closed-loop poles (GH(s) is un-
derstood to represent the transfer
function of all of the elements in
the loop between the error signal
(E) and the feedback signal (B).
The function GH(s) is called the
loop transfer function or open-
loop transfer function and is
denoted by either GH(s) or
B(s)/E(s), as shown in Figure 1-9.
This note uses the notation GH(s)

and refers to it as the open-loop
transfer function.

Figure 1-9:

Open-loop

transfer function

of a closed-loop

control system.

GH(s) = G G H(s) =1 2

G2

H

ME

B

+R
Σ

CG1

Test
Normal

for switch in "test" or open position (therefore the
name "open-loop transfer function")

B(s)
E(s)

B(s)
E(s)

Also: B(s) = EG G H(s) for switch in either "test" or "normal" position1 2

= G G H(s)1 2
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At this point it is worthwhile to
recognize that G(s) and H(s) are
themselves generally ratios of
polynomials in s. G(s) and H(s)

can therefore be represented by:

G(S) = and H(s) =

where the subscripts n and d
indicate the numerator and
denominator portions of G(s)

and H(s), respectively.  If the
closed-loop transfer function is
reformulated in terms of the
numerator and denominator of
G(s) and H(s) we have:

C(s) G(s)

R(s) 1 + GH(s)

The objective of expressing the
closed-loop transfer function in

this manner is to illustrate that
the term 1+ GH(s) itself has
poles and zeros, and that it is the
zeros of this term that determine
the poles of the closed-loop trans-
fer function.  It is also worth
noticing that the zeros of the
closed-loop transfer function
are the roots of the equation
G

n
(s)H

d
(s) = 0.

3-2.3: Nyquist Diagrams

It was Nyquist’s observation that
the frequency response of the
open-loop transfer function
(i.e. GH(jω)) can be used to

determine if there are any zeros
of the term 1 + GH(s) (and there-
fore poles of the closed-loop
transfer function) in the right half
of the s-plane.  To make this
determination, GH(jω) is first
plotted on a two-dimensional Car-
tesian coordinate system whose
ordinate is the imaginary part of
GH(jω) and abscissa is the real
part of GH(jω).  The complex
conjugate of the frequency re-
sponse curve is then plotted on
the same graph, as shown by the
dashed line in Figure 1-10A.

The next step is to establish a
vector V

1
 whose tail is affixed to

the point -1 + jφ.  If the head of
the vector is then placed any-
where along the curve of GH(jω),
the vector then represents the
quantity 1 + GH(jω), as illus-
trated in Figure 1-10B.

Figure 1-10:

Nyquist diagram

in rectangular

coordinates.

G
n
(s) H

n
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d
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== =
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(s)
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d
(s) G
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(s)H
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G
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(s)H

n
(s) G

d
(s)H

d
(s) + G

n
(s)H

n
(s)

G
d
(s)H

d
(s) G

d
(s)H

d
(s)

A. Plot of

open-loop

frequency

response and

its complex

conjugate.

B. Vector

representation

of the quantity

1 + GH(jωωωωω).

Re

Im

V = 1 + GH(j )1 ω ω

0

Re

Im

GH(j )ω
ω

0 V1

1 + j0
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3-2.4: Nyquist’s Stability

Criterion (Nyquist diagram)

At this point, Nyquist’s Stability
Criterion states that as the head
of the vector traces the GH(jω)

curve in the direction of increas-
ing positive frequency, the net
number of complete rotations
N is equal to the number of poles
P

r
 of the term 1 + GH(s) in the

right half of the s-plane minus
the number of zeros Z

r
 of the term

1 + GH(s) in the right half
of the s-plane.  That is:

N =  Z
r
  –  P

r

where N is positive for clockwise
rotations and negative for coun-
terclockwise rotations.  We there-
fore know that a system is stable
only if N = – P

r
.  It is a general

consensus that for most real
systems P

r
 = 0 and, therefore,

N = Z
r
.  When this assumption is

true, the condition for stability
can be restated as: a system is
stable if and only if N = 0.
Figure 1-11 illustrates examples
of systems which are stable,
conditionally stable, and unstable.

Figure 1-11:

Nyquist diagrams
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ω

0

-1 + j0

Re

Re

Im

Im

ω

ω

0

0

N = 0

N = +2

N = 0

A. Stability

B. Instability

C. Conditional

stability

As illustrated, the system is stable.

However, if the gain in increased so that the
area shaded encloses the -1 +  j0 point, then
N = 2, and the system is again unstable.

Also, if the gain is decreased so that the area
shaded in gray encloses the -1 + J0 point,
then N = 2, and the system is again unstable.

Therefore by either increasing or decreasing
the gain, the system becomes unstable (i.e.,
the system is conditionally stable).
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3-2.5: Magnitude and

Phase Contours

The Nyquist diagram can also be
used to evaluate the closed-loop
frequency response from the
open-loop frequency response if
the system being analyzed has
unity feedback.  For H(jω) = 1

the closed-loop transfer function
for real frequencies becomes:

C( jw) G( jw)

R(jw) 1 + G(jw)

If another vector V
2
 is added to

the Nyquist diagram so that it
projects from the origin and
meets with the vector V

1
 at the

curve of G(jω), then the closed-
loop transfer function can be
represented by the ratio of V

2
/V

1
,

as shown in Figure 1-12.

Useful tools for evaluating the
performance of a unity-feedback
control system are magnitude
contours (often referred to as
M-contours).  A magnitude
contour is a locus of points for
which the ratio of the magnitudes
of V

1
 and V

2
 is a constant.  When

plotted on the Nyquist diagram,
a magnitude contour will appear
as a circle (except when
|V

2
/V

1
| = 1.0), as shown in

Figure 1-13.  When the open-loop
transfer function is plotted on a
Nyquist diagram with magnitude
contours, the maximum gain of
the closed-loop transfer function
can be identified as the value of
the magnitude contour which is
tangent to the plotted curve, as
shown in Figure 1-4.  A similar
diagram can also be constructed
for constant values of phase
difference between V

1
 and V

2
.

Plots of constant phase are called
phase contours or N-contours.

Re

Im

ω

0V2

(-1 + j0)

V1 GH(j )ω

V = 1 + GH(j )
V = GH(j )
for H(j ) = 1
V = 1 + G(j )
V = G(j )

1

2

1

2

ω
ω

ω
ω

ω

V
V

1

2

G(j )
1 + G(j )

ω
ω

=Therefore: closed-loop frequency response
for a unity feedback control system

=

Figure 1-12:

Evaluation of

closed-loop

response from

open-loop

frequency

response

(unity feedback).

=
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From Figure 1-14 it can be seen
that as the curve of the open-loop
frequency response approaches
-1 + j0, the maximum gain of the
closed-loop frequency response
approaches infinity (for either
unity or nonunity feedback).  It
can be shown that the movement
of the open-loop frequency re-
sponse toward -1 + j0 is directly
related to the movement of the
closed-loop poles toward the
right half of the s-plane, therefore
causing the system to become
less stable.

3-2.6: Bode on Stability

When H. Bode published his
paper, “Relations Between
Attenuation and Phase in Feed-
back Amplifier Design” in 1940,
he noted that for a system to be
absolutely stable it can only cross
the negative real axis between the
origin and -1 + j0.  According to
Bode, crossing the negative real
axis anywhere else produces a
system which is either unstable or
conditionally stable; neither of
which is generally desirable.

Bode’s statement is much easier
to interpret if the scale of the
Nyquist diagram is changed from
rectangular coordinates to polar
coordinates, as shown in Figure
1-15.  The -1 + j0 point then repre-
sents a magnitude of 1 and a
phase of -180 degrees.  Using a
polar Nyquist diagram, Bode’s
observation can be restated as:
for a closed-loop system to be
absolutely stable, the phase of
the open-loop frequency response
should not exceed 180 degrees
until its magnitude becomes
less than one.

Re

Im

Locus of points for which
| V |
| V |

2

1
= 1.1

-1 + j0

2.0

1.0

1.6

1.4

1.2

1.1

0.8

0.6

0.4

V1 V2

Figure1-13:

Loci of constant

magnitude

contours.

1 “Relations Between Attenuation and Phase
in Feedback Amplifier Design,” Bell

System Tech. J., 19, 421-454 (July 1940).



17

Figure 1-14:

Determining the

maximum gain of

the closed-loop

frequency

response of a

unity-feedback

control system.

Re

Im

(-1 + j0)

GH(j )ω

C(j )
R(j )

ω
ω

G(j )
1 + G(j )

ω
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= =  2.0

GH(j ) Tangent to magnitude contour
equal to 2.0, therefore the
maximum value of

ω
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2.0

4.0

Figure 1-15:

Nyquist diagram

in polar coordinates.
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3-2.7: Gain Margin and

Phase Margin

Bode also explained that an
open-loop frequency response
curve which just met this crite-
rion would rarely produce a
stable system since any small
variations in the system’s perfor-
mance would place the response
in an unstable region.  He there-
fore suggested that a certain
amount of margin should be allot-
ted for both the phase and gain
values as they approached the
point representing a magnitude
of 1 and a phase shift of -180
degrees.  These margins are now
standard performance parameters
known as the phase margin and
gain margin.

Phase margin is defined as
180 degrees minus the absolute
value of the phase of the open-
loop frequency response at the
point where the magnitude of the
open-loop frequency response
(i.e., the open-loop gain) is equal
to one.  That is:

phase margin = 180 -  |∠GH(jω)|

where |GH(jω)| = 1

Gain margin is defined as the
reciprocal of the open-loop fre-
quency response gain at the point
where the phase of the open-loop
frequency response is equal to
minus 180 degrees.  That is:

gain margin =

where GH(jω) = -180 degrees

The gain margin therefore repre-
sents the amount the open-loop
gain can be increased before it
reaches a magnitude of 1.  Ex-
amples of gain margin and phase
margin are shown in Figure 1-16.

The importance of the gain and
phase margin can be fully appreci-
ated when they are compared
with, and shown to correlate with,
the time domain parameters of
the step response.  For example,
for a system whose response
characteristics are dominated by
a pair of complex poles (a very
common case), the following rela-
tionships can be observed.  An in-
crease or decrease in the system’s
frequency independent gain1 will
cause both the gain margin and
phase margin to decrease or in-
crease, respectively.  For the case
in which the gain is increased, the
following events will occur:

From this series of interactions it
can be seen that the development
of a control system is generally
a trade-off between the desired
performance characteristics.
Although each control system has
unique requirements, minimum
acceptable levels of gain margin
and phase margin are typically
2 (or 6 dB)2 and 30 degrees,
respectively.

In addition to gain margin and
phase margin, there are several
other performance quantities such
as the system type and steady-
state error coefficients which can
be extracted from a Nyquist dia-
gram.  Unfortunately, a complete
description of these quantities is
beyond the scope of this docu-
ment (several references for
further study are listed at the end
of this note).  It can be assumed,
however, that the key perfor-
mance characteristics of a control
system can be adequately charac-
terized with a Nyquist diagram.

One shortfall of the Nyquist
diagram is the difficulty encoun-
tered when attempting to predict
the effects of changes to a control
system.  Most alterations (other
than a change in frequency inde-
pendent gain) require a significant
number of calculations, or a new
measurement, to accurately ob-
tain the correct Nyquist diagram.
As a result, several other analysis
techniques were developed to
make the design and analysis of
a control system easier.  These
are discussed in detail in the
following chapter.

1 Frequency independent gain is also
referred to as proportional amplification
and is represented by the variable K.  A
more detailed explanation is provided in
the discussion of the root locus diagram,
Section 4-4.

2 dB represents a unit of comparison known
as the decibel.  It is calculated for both
voltage and power rations with respective
formulas for each being: dB = 10 log
(power ratio) and dB = 20 log (voltage
ration).  See Hewlett-Packard Application
Note 243, The Fundamentals of Signal

Analysis, p. 5, for further details.

1

|GH(jω)|

• the gain margin and
phase margin will decrease;

• the maximum overshoot
will increase;

• the rise time will decrease;
• and, in some cases, the

steady-state deviation
will decrease.
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Figure 1-16:

Measuring gain

margin and phase

margin on a

Nyquist diagram1.

Table 1-1:

Generalized

relationships

between time

domain and

frequency domain

performance

parameters

relative to an

increase in the

frequency

independent gain.

1 Figure 1-16 is adapted from the American
National Standard ANSI MC85 1M-1981,
Terminology for Automatic Control.

Frequency
Independent
Gain
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Phase
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Time
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Overshoot
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Deviation

Frequency Domain Time Domain
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E(j )ω
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+R(j )ω C(j )ω4
j (1 + 0.125j )ω ω
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α
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There is perhaps no design
tool which has gained as much
popularity as the diagram which
Bode presented in his 1940 paper,
“Relations Between Attenuation
and Phase in Feedback Amplifi-
ers.” This chapter looks at the
famous Bode diagram and two
other popular design and analysis
tools; the Nichols diagram and
root locus diagram.

4-1: The Bode Diagram

The Bode diagram is similar to
the Nyquist diagram in that it also
represents a plot of the open-loop
frequency response.  However,
the Bode diagram considers the
gain and phase of the response
separately by providing a plot of
each versus frequency.  The plot
of open-loop gain versus fre-
quency is called the loop gain
characteristic and the plot of
open-loop phase versus frequency
is called the loop phase character-
istic, as shown in Figure 1-17.

Bode diagrams use logarithmic
units (i.e., dB) for gain and
logarithmic scales for frequency;
phase is the only parameter repre-
sented linearly.  The use of loga-
rithmic scales and units provides
the Bode diagram with three key
advantages.  First, by displaying
gain in units of dB, a much wider
range of gain levels can be dis-
played on a single plot.  Second,
the effect on the open-loop fre-
quency response of adding a new
component in a control loop can

be calculated through simple ad-
dition rather than multiplication.
That is, by plotting the frequency
response of a new component on
the same Bode diagram as the
original response, the frequency
response of the new system can
be calculated by graphically add-
ing the two plots.  Third, the loga-
rithmic scales and units facilitate
a technique for quickly estimating
the frequency response of an ana-
lytic transfer function.  This last
point is a major topic of Bode’s
paper.  In his paper, Bode pre-
sented a relatively simple set
of procedures for constructing a
set of curves which would closely
estimate the actual frequency
response of a transfer function
without ever actually calculating
or measuring the response.

An equally powerful tool was the
ability to apply Bode’s construc-
tion procedures in reverse.  That
is, to obtain information about the
analytic transfer function from
the measured frequency response.

Chapter 4:
More Tools for Design and Analysis
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Figure 1-17:

Bode diagrams

showing frequency

response for a

typical open-loop

transfer function1.
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1 Figure 1-17 is adapted from the American
National Standard ANSI MC85. 1M-1981,
Terminology for Automatic Control.
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4-2: Stability and

the Bode Diagram

The Bode diagram also provides
a simple check for stability.  Ac-
cording to Bode’s interpretation
of Nyquist’s Stability Criterion, for
a system to be absolutely stable,
the loop gain characteristic must
be less than one before the loop
phase characteristic exceeds
(becomes more negative than)
180 degrees.  On a Bode diagram,
this means the frequency at which
the loop gain characteristic be-
comes equal to 0 dB (i.e., the gain
crossover frequency) must be
lower than the frequency at which
the loop phase characteristic be-
comes equal to – 180 degrees (i.e.,
the phase crossover frequency).

The phase margin, gain margin,
and open-loop bandwidth1 of a
system can also be read directly
from the Bode diagram, as shown
in Figure 1-17.

One of two disadvantages of the
Bode diagram is that there is no
technique for directly relating
the open-loop frequency response
to the closed-loop frequency re-
sponse (as was possible with the
magnitude and phase contours of
the Nyquist diagram).  However,
the frequency response informa-
tion from a Bode diagram can be
directly transferred to a Nyquist
or Nichols diagram to evaluate
the closed-loop frequency re-
sponse.  (It is important to note
that a reverse exchange of infor-
mation, that is, from a Nichols or
Nyquist diagram to a Bode dia-
gram, may not be possible due to
the loss of frequency information
in both the Nichols and Nyquist
diagrams.)

A second disadvantage of the
Bode diagram is its limited ability
to verify the stability of control
systems which are conditionally
stable.  Fortunately, conditionally
stable systems are rarely designed
intentionally and can be analyzed
by transferring the frequency re-
sponse data to a Nyquist diagram
if necessary.

4-3: The Nichols Diagram

The Nichols diagram (also known
as the log magnitude-angle dia-
gram) is essentially a combination
of the Nyquist and Bode diagrams.
It is conceptually similar to the
Nyquist diagram in that it plots
the magnitude of GH(jω) versus
the angle of GH(jω) as a function
of frequency (ω) on a single
graph, as shown in Figure 1-18.
Its structure, however, more
closely resembles a Bode diagram
in that it uses a rectangular coor-
dinate system and scales gain in
units of dB.

The Nichols diagram incorporates
some of the advantages provided
by the Bode and Nyquist diagrams
into a single graph.  By plotting
gain versus phase, the Nichols
diagram allows the construction
of magnitude and phase contours
similar to those used on the
Nyquist diagram.  However, by
scaling the gain in units of dB, a
single set of contours can be ap-
plied over a much broader range
of gain levels.  A single Nichols
diagram can therefore provide a
direct readout of the closed-loop
frequency response (of a unity
feedback control system) for a
much broader range of open-loop
gains.  Nichols diagrams which
have a large set of magnitude and
phase contours drawn on them
are often called Nichols charts.

1 Open-loop bandwidth is defined as the
frequency span between 0 Hz and
frequency at which the gain of the open-
loop frequency response is equal to 1.
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Figure 1-18:

Nichols diagram

(log magnitude

versus angle

diagram) for a

typical open-loop

transfer function.

Gain margin and phase margin
can also be read directly from
the Nichols diagram.  However, to
obtain the open-loop bandwidth,
the gain crossover frequency must
be evaluated while the plot is
being constructed, and then
marked on the graph, as shown
in Figure 1-18.

The main disadvantage of the
Nichols diagram is the difficulty
in plotting GH(jω) directly from
the transfer function.  Unlike the
Bode diagram, there is no simple

set of rules which provides a
quick estimation of a transfer
function’s frequency response.  It
is therefore difficult to predict the
effect of a compensation circuit
on the system’s performance.

The Nichols diagram is also
limited in its ability to verify the
stability of conditionally stable
systems.  However, like the Bode
diagram, the frequency response
information can be transferred to
the Nyquist diagram for analysis.
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4-4: The Root Locus Diagram

The root locus diagram (or root
locus plot) was developed by
W.R. Evans and presented in his
1950 paper, “Control System
Synthesis by Root Locus
Method”1.  The root locus diagram
is a departure from the frequency
response plotting techniques used
by the Bode, Nichols and Nyquist
diagrams.  All three of the latter
techniques use the frequency re-
sponse of the open-loop transfer
function, GH(jω), to gain infor-
mation about the relative location
of the closed-loop poles in the
s-plane.  The root locus diagram,
however, uses the location of the
open-loop poles and zeros in
the s-plane to predict the actual
location of the closed-loop poles.
Before discussing the root locus
diagram further, it is again
necessary to introduce another
concept.

The symbol G was previously
defined as a transfer function
whose gain and phase character-
istics change with respect to the
variable s or jω.  It can, however,
be divided into two factors: 1) a
proportional amplification often
denoted as K, which is indepen-
dent of s or jω and associated
with a dimensioned scale factor
relating the units of input and
output; 2) a dimensionless factor
often denoted as G which is
dependent on s or jω.  Therefore,
if K is used as a prefix when ex-
pressing a transfer function, it is
understood that K represents a
gain value extracted from the
transfer function which is inde-
pendent of s or jω.  For example,

if the open-loop transfer function
is expressed as KGH(jω), it is un-
derstood that K is the gain portion
of GH(jω) which is independent
of jω.

The objective of the root
locus diagram is to graphically
locate values of s which set the
open-loop frequency response
equal to -1, that is s such that
GH(s) = -1.  These values of s
will therefore also represent roots
of the characteristic equation
1 + GH(s) = 0 and, further,
represent the location of the
closed-loop poles.

The power of the root locus
technique is its recognition of the
frequency independent gain of the
open-loop transfer function, K of
KGH(s).  The root locus tech-
nique recognizes that for each
value of K there is a unique set of
values for s which satisfy the
equation KGH(s) = -1.  For
example, if K is set equal to 3 in
the open-loop transfer function:

KGH(s) =

then there exists a unique set
of values of s, in this case those
shown in Figure 1-19A, for which
3GH(s) = -1(or alternatively,
GH(s) = -1/3).  If K is set equal
to 4, then there exists another
set of values of s for which
GH(s) = -1/4, as illustrated in
Figure 1-19B.  This new set of
values for s represents the new
locations of the closed-loop poles
when K is increased from 3 to 4.

If the unique set of values for s
were calculated for each value of
K from zero to infinity and plotted
on the same graph, the result

would be a set of lines which
represent a locus of roots to the
equation 1 + KGH(s) = 0 for all
possible values of K, as shown in
Figure 1-19C.  This plot is called a
root locus diagram.

If root locus diagrams were
constructed in this fashion, it
would require many calculations
and make the construction of the
diagram much too involved to be
of practical value, at least without
the aid of a computer.  Fortu-
nately, Evans also presented a
technique for graphically estimat-
ing the root locus diagram based
on the location of the open-loop
poles and zeros in the s-plane.
The procedure is relatively simple
and it is not uncommon for
people who have mastered the
root locus technique to quickly
sketch the root locus diagram
based solely on the location of the
open-loop poles and zeros (i.e.,
with virtually no calculations).  A
root locus diagram will therefore
generally include designators indi-
cating the position of the open-
loop poles and zeros as shown in
Figure 1-20.

The root locus diagram is a very
powerful design tool since it
works directly with the location
of the closed-loop poles in the
s-plane.  However, the root locus
technique can only be used if the
number and location of the open-
loop poles and zeros are known.
It is therefore less flexible than
the Nyquist or Bode diagrams
which need only the measured
open-loop frequency response to
predict performance and provide
design information.  It does, how-
ever, provide more information
during the initial design process
and is better suited for the
design of complex compensation
networks.

1 “Control System Synthesis by Root Locus
Method,” Trans, AIEE, 69,
1-4 (Mar 10, 1950).

K

s(1 + 0.125s)(1 + 0.5s)
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Figure 1-20:

Root locus

diagram of

the equation

GH(s) = = -1
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The design and analysis tools
presented so far have all assumed
that the control system or sub-
system being analyzed is linear.
Unfortunately, the vast majority
of control systems are actually
nonlinear, either by design or by
virtue of the components within
the system.

There are some very complex
analysis tools which deal directly
with nonlinearities; however, a
very common practice is to obtain
an approximation of the system’s
nonlinear operation which best
conforms to a linear response.
The approximation can then be
used with the tools presented in
the previous chapters.

For example, Figure 1-21A shows
a typical gain curve (V

out
/V

in
)

which is essentially linear for
input voltages less than V

L
 and

nonlinear for input voltages
greater than V

L
.

If the system characterized by
Figure 1-21A is operated within a
narrow range of voltages centered
about a voltage V

1
, as shown in

Figure 1-21B, then the system will
operate over a linear region of the
curve and can be modeled with
the linear equation:

V
out

 = aV
in

or = a

where a is a constant.

If, however, the system operates
under the same conditions except
at a higher average voltage V

2
, as

shown in Figure 1-21C, then the
system is not operating in a linear
region and a linear approximation
is required.

Graphically, a linear approxima-
tion could be obtained by simply
drawing a straight line through

the operating region which best
fits the gain curve.  This approxi-
mation, however, would not
address the distribution of energy
throughout the response spectrum
due to the distortion of the
output waveform, as shown
in Figure 1-21C.

For this type of nonlinearity, a
better technique for obtaining a
linear approximation of the
system’s gain is to measure
only that part of the response
spectrum which is at the same
frequency as the input.  That is,
measure the system gain at the
fundamental frequency of the
stimulus and ignore all the
other frequency components, in-
cluding those created by system
nonlinearities.  If a series of both
gain and phase measurements are
made over a range of frequencies,
the results can be plotted to pro-
duce a graph of the system’s fre-
quency response.  The resulting
frequency response can then be
used to generate a transfer func-
tion based solely on the funda-
mental.  Such a transfer function
is often called a describing func-
tion and is generally considered a
good linearized approximation of
a system with nonlinearities such
as harmonic distortion and
intermodulation distortion.

A common technique used to
make the measurement described
is to stimulate the system with a
swept sine wave source and mea-
sure both the stimulus and the re-
sponse with narrow bandpass
filters which track the frequency
of the source.  Test instruments
capable of making this type of
measurement include network
analyzers, frequency response
analyzers, and properly equipped
Dynamic Signal Analyzers (DSAs).

It is important to note that for any
small change in either the mean
voltage V

2
, or the amplitude of the

sine wave itself, the measured
frequency response will also
change.  This change in measure-
ment result due to changes in the
testing conditions is a common
phenomenon associated with
most nonlinear devices.

If a nonlinear system is both
sensitive to changes in the stimu-
lus signal (as described above)
and operated over a wide range
of stimulus levels, then there is
typically no one unique frequency
response or describing function
which can accurately model the
operation of the system.

As a practical solution to this
problem, a nonlinear device is
typically tested under conditions
which closely approximate the
actual operating conditions of
the system.  If the operating
conditions themselves do not
vary widely, and they can be
adequately simulated during test-
ing, then the resulting measure-
ments are generally assumed to
be a linearized estimation of the
device’s operation.

To provide maximum flexibility in
obtaining a linearized estimation
of a device’s operation, advanced
DSAs provide two separate analy-
sis functions for measuring the
frequency response of both linear
and nonlinear devices: Swept
Fourier Analysis (SFA) and Fast
Fourier Transform (FFT) analy-
sis.  More information concerning
SFA and FFT analysis as well as
many of the other measurement
capabilities provided by DSAs
are presented in Part 2 of this
application note.

Chapter 5:
Nonlinear Systems

V
out

V
in
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Historically, a test instrument’s
primary contribution to the
development of a control system
has been the collection of stimu-
lus and response data.  While
this is still true, microprocessor-
based Dynamic Signal Analyzers
(DSAs) have expanded the role
of the test instrument to include
significant contributions in other
areas of control system develop-
ment, such as modeling and
design.

The purpose of the following
chapters is to provide a basic
introduction to the measurement
and analysis capabilities pro-
vided by high performance
DSAs, and to suggest how
these tools can be used in the
various phases of control
system development.

Chapter 1:
Modeling the
Development Process

In general, it is recognized that
the development of a control
system typically involves some
unique combination of five
distinct processes: model,
design, build, test and analyze.
For the purpose of this applica-
tion note, these five processes
are defined as follows:

Design: determining the
combination of physical or
theoretical components or
parameters that will produce
a desired action or result.

Model: the process of transform-
ing the observed characteristics
of some device or process into
theoretical representations con-
sistent with the analysis/design
technique being used.

Build: the physical construction
of a system and/or its
components.

Part 2:
Measurement and Analysis Tools
Applied to the Development Process

Test: the collection of stimulus
and/or response data.

Analyze: determining the value of
parameters, either physical or
theoretical, used to characterize
the action or function of a device.
Also establishing the relation-
ships, if any, between those
parameters.

When grouped into a process
flowchart, these five processes
can be used to model the
development of a control system.
A generalized example of a
“development process” model/
flowchart is shown in Figure 2-1.

To emphasize the DSA’s ability
to contribute throughout the
development of a control system,
the following chapters examine
the tasks associated with each
development process (with the
exception of build) and present
the tools provided by DSAs for
accomplishing those tasks.  To
provide a structured introduction,
the chapters are presented in the
following order: Test, Analyze,
Model and Design.

TestAnalyze

Design BuildModel
Figure 2-1:
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Test: the collection of stimulus
and/or response data.

There are many tests which con-
form with the above definition;
however, the most common con-
trol system tests are the measure-
ment of a system’s response to a
step change in the input (i.e., the
step response) and the frequency
response of the system and/or any
of its components.

Instruments which have com-
monly been used to perform these
tests include frequency response
analyzers, network analyzers,
waveform recorders, strip-chart
recorders, and storage oscillo-
scopes.  Typical control system
tests often required at least two of
these instruments: one instrument
to record time domain data (e.g.,
the impulse response or step
response) and another to record
frequency domain data (e.g., the
open-loop or closed-loop fre-
quency response).

The high performance DSA,
however, is a single instrument
capable of providing all the mea-
surement capability needed in the
dc to 100 kHz frequency range.
Technological advances allow
DSA to assume 1 to 3 basic con-
figurations: a waveform recorder
for direct measurement of time
domain data, a frequency
response analyzer (i.e. Swept
Fourier Analyzer) for providing
frequency domain data, or a Fast
Fourier Transform (FFT analyzer
which also provides frequency
domain information.

In addition to providing three ana-
lyzers within one test instrument,
the DSA also provides several sig-
nal monitoring functions.  These
functions allow the DSA to auto-
matically optimize measurement
conditions during a test, reducing
the need for operator interaction.

The remainder of this chapter pre-
sents the DSA’s basic capabilities
for measuring both time domain
and frequency domain data.

2-1: Time Domain

Measurements

Time domain measurements
require the test instrument to
record the reaction of a device in
response to some controlled
change in the system’s input.
A measurement is generally con-
sidered successful if it records
the entire response and allows
the operator to examine both the
long term trend of the response
and the details of any short
term events.

DSAs provide this measurement
capability by sampling the signals
applied to their inputs and record-
ing the samples as blocks of con-
tiguous data called time records.
How the time records are stored
and how the data within them can
be accessed depends on which of
two measurement modes, time
capture or time throughput, is
used to collect the data.

Chapter 2:
Test



30

2-1.1: Time Capture

Responses which decay to a
steady state value within a
few time records can easily be
recorded using the DSA’s time
capture mode.  The time capture
mode stores a limited number of
contiguous time records within
the DSA’s internal memory.  Once
collected, all the data can be com-
pressed onto a single trace on the
DSA’s display.  Segments of the
compressed data can then be ex-
panded and closely examined on
the second trace of the display, as
shown in Figure 2-2.

2-1.2: Time Throughput

Occasionally, a device with a very
long settling time will require
very large amounts of data to be
recorded.  In these situations, the
DSA’s time throughput mode can
be used to store contiguous time
records1 directly to a mass stor-
age disc without the need for an
instrument controller.  To study
a recorded event, time records
are recalled from the disc and
presented on the DSA’s display.

To ensure that an entire response
can be recorded, both time cap-
ture and time throughput provide
pre- and post-trigger data record-
ing functions.  The pre-trigger
function allows a specified
amount of data obtained before
a trigger occurs to be recorded.
The post-trigger function allows
a specified amount of data to be
ignored when obtained after a
trigger occurs.

For systems with very fast
response times, the pre-trigger
function can be used to record the
steady-state operation of a system
just before a step change is intro-
duced.  Alternatively, the post-
trigger function can be used to

ignore the large amounts of dead
time in systems with very slow
response times.

In addition to recording and
displaying time domain data,
DSAs are also capable of recalling
recorded data and processing it
through a Fast Fourier Transform
algorithm.  This allows the DSA to
provide both time and frequency
domain information from one set
of recorded data.  This capability
can be especially valuable for ex-
tracting the maximum amount of
information from tests which can
be performed only once, such as
destructive tests.

1 If the DSA collects data much faster that
the connected disc can record data, or
the DSA collects data faster than it can
process the data through its own I/O
section, then the time records will no be
contiguous.  The rate at which time
records can be transferred in a contiguous
fashion is referred to as the “real-time
bandwidth” of the throughput function.
More information on real-time bandwidths
is available in Hewlett-Packard Application
Note 243, The Fundamentals of Signal

Analysis.

Figure 2-2:
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2-2: Frequency Domain

Measurements

Virtually all closed-loop control
system development requires the
frequency response of the system
and/or some of its components
to be evaluated by experiment.
Unlike most conventional test
instruments, advanced DSAs pro-
vide two independent techniques
for measuring the frequency re-
sponse of a device; Swept Fourier
Analysis and Fast Fourier
Transform analysis.

2-2.1: Swept Fourier Analysis

Swept Fourier Analysis (SFA) is
a very common measurement
technique involving a swept sine
wave source and an integration
process which emulates a track-
ing bandpass filter, as shown in
Figure 2-3.  The primary objective
of this measurement technique is
to measure the gain and phase
shift of a device by measuring
only the fundamental component
of the stimulus signal and only
the fundamental component of
the device’s response signal (the
frequencies of the fundamentals
are assumed to be the same).  A
series of measurements are made
at different frequencies to provide
a frequency response based on
the fundamental of the stimulus
and response signals (i.e. ignoring
any other spectral components
including those generated by
nonlinearities such as harmonic
distortion).

By using very narrow bandwidths,
the effects of nonlinearities such
as harmonic distortion, dc offset
and random noise can be mini-
mized.  This measurement tech-
nique also allows those types of
nonlinearities which are not af-
fected by narrow filter band-
widths (such as level saturation
and frequency shifting of reso-
nances) to be characterized by
either making several measure-
ments at different stimulus levels
or by sweeping in both directions.

To achieve the narrow filter
bandwidths required to measure
low frequency systems, DSAs uti-
lize a Discrete Fourier Transform
to evaluate the energy within a
narrow frequency span.  The
transform is evaluated at several
points during a sweep with the
center frequency of the analysis
corresponding to the frequency
of the swept sine source (thus the
term Swept Fourier Analysis).
This technique emulates a track-
ing bandpass filter with very
narrow bandwidths, very good
harmonic rejection and excellent
dc rejection.

An added advantage of using a
DSA to make SFA measurements
is the availability of automated
measurement functions.  By
constantly monitoring the signals
applied to its inputs and referenc-
ing past measurements, the DSA
can automatically:

• adjust its input sensitivity
• reject measurements in which

input overloads occurred
• adjust the frequency resolution of

the measurement relative to the
rate of change in gain and phase

• repeat a measurement at a given
frequency and average the results
until an acceptable variance in the
measurement is obtained

• adjust the source level to
maintain a constant stimulus or
response level

• allow the operator to simulta-
neously monitor the signals
applied to the analyzer (in
either the time or frequency
domains) and view the current
measurement.
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Figure 2-3:
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2-2.2: Fast Fourier

Transform Analysis

Compared to SFA, FFT analysis
represents more of a parallel ap-
proach to measuring a device’s
frequency response.  Rather than
sweeping a single bandpass filter
as the SFA technique does, the
FFT process uses a different form
of Fourier integration to create
many adjacent bandpass filters
(up to 800 in advanced DSAs), as
shown in Figure 2-4.  These filters
selectively and simultaneously
measure the energy distributed
over an entire frequency span.

A useful analogy is to think of
each filter as the bandpass filter
of an SFA analyzer.  However,
rather than collect new data for
each measurement point sweep,
the FFT process uses time
records to collect time domain
data and then processes the data
through 800 filters simulta-
neously.  This form of parallel
processing provides exceptional
measurement speeds.  It is worth
noting, however, that unlike an
SFA measurement, an FFT mea-
surement does not filter out
energy converted to other fre-
quencies by nonlinearities in the

system.  Instead, these frequency
components (if they are not
coherent with the stimulus) are
removed by averaging several
measurements.

One of the most powerful at-
tributes of the FFT measurement
technique is that it allows virtu-
ally any type of signal to be used
as a stimulus.  Common stimulus
signals used with FFT measure-
ments include: actual operating
signals, sine wave chirps, fixed
sine waves, random noise, burst
random noise, step functions and
impulse functions.
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This broad range of stimulus
signals increases the resources
available for characterizing the
operation of a system.  Often,
selecting the right stimulus signal
can provide a better understand-
ing of nonlinearities present in the
system and, in some cases, even
reduce the overall testing time.
The following paragraphs cite
some of the benefits offered by
certain source types.

An important class of stimulus
signals are those stimuli which
produce energy at all of the fre-
quencies being analyzed by the
FFT algorithm and do so within
one time record.  Stimuli which
meet this criteria (such as the
sine chirp, random noise, burst
chirp and burst random noise
stimuli provided by advanced
DSAs) allow the FFT algorithm to
provide frequency response infor-
mation over the entire frequency
span being analyzed with just one
measurement.  If any of these
stimuli (with the exception of ran-
dom noise) are used to test a sys-
tem which is relatively noise-free
and linear, a single time record is
often sufficient data to produce
an accurate frequency response.

When testing a nonlinear system,
selecting a stimulus signal which
approximates the signals present
during normal operation can
provide results which more accu-
rately predict the system’s opera-
tion.  The ability to use a random
noise stimulus can be very useful
in this respect.  For example, ran-
dom noise superimposed on a dc
level often resembles the signals

present in a servo system
much more than a sine wave
superimposed on a dc level.

Signals with random amplitude
distribution, such as true random
and burst random, can be used to
provide an approximation of the
frequency response of a system
with amplitude nonlinearities.
Because random noise is charac-
terized by a random level distribu-
tion at a given frequency, a
random noise measurement
produces a frequency response
which represents an average of
responses taken at several stimu-
lus levels.  When attempting to
measure the frequency response
of a device with an amplitude
nonlinearity such as gain com-
pression, a random noise mea-
surement may provide a better
approximation of the device’s
actual operation than a single
swept sine measurement.

A random stimulus signal can
also reduce the effects of
nonlinearities influenced by the
direction of a sine sweep.  Such
nonlinearities often show up as a
change in resonance frequencies
corresponding to a change in
sweep direction (not to be con-
fused with skewed responses
caused by excessive sweep
speed).  Since random noise
continuously produces energy
over an entire frequency spec-
trum, the measurement is not
affected by transferring energy
from one frequency to another.

Some forms of nonlinearities
preclude the use of certain stimu-
lus types.  For example, when
testing systems with a significant
amount of dead zone or hyster-
esis, such as large gear trains,
signals such as random noise can
be inappropriate.  The waveform
of a random signal is typically
characterized by many changes in
slope and a greater concentration
of lower level voltages than high
level voltages.  This would create
a lot of noise in a gear train while
producing little output.  Instead, a
sine wave stimulus which spends
more time at higher voltage levels
and makes fewer slope transitions
may be a much better overall
stimulus choice.

The decision of which stimulus/
analysis combination should
be used is driven in part by the
known attributes of the device
being tested and the kind of
information being sought.  For
example, several swept sine
measurements made at different
stimulus levels can be used to
characterize the operation of a
device with an amplitude
nonlinearity.  Alternatively, an
FFT measurement using random
noise and averaging can be used
to provide a single frequency re-
sponse which approximates the
device’s operation over a range
of stimulus levels.
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If the device being tested is
essentially linear (at least within
the range of amplitudes and
frequencies being tested), the
selection of a stimulus/analysis
combination is simply a matter
of measurement speed.  Any
stimulus/analysis combination
would be able to produce
accurate results.

It is important to note, however,
that before any assumption can be
made about a system’s linearity,
at least two measurements (with
variances in the stimuli between
them) must be compared.  If the
system is found to be nonlinear,
it may take several more mea-
surements to characterize the
nonlinearity so that its effect on
the operation of the system can
be understood.

It is in response to these measure-
ment needs that advanced DSAs
have incorporated the ability to
make time domain measurements,
traditional swept sine frequency
response measurements and non-
traditional frequency response
measurements utilizing virtually
any type of stimulus signal and
FFT analysis.  With these mea-
surement capabilities, the DSA
provides a total measurement
solution for fully characterizing
the operation of control systems.

Analyze: determining the value
of parameters, either physical or
theoretical, used to characterize
the action or function of a device.
Also, establishing the relation-
ships, if any, between those
parameters.

This definition of analysis,
when applied to classical control
theory, generally implies the
evaluation of parameters such as
gain margin, phase margin and
settling time.

Typically, these parameters are
not evaluated by the test instru-
ment.  More often than not, they
must be derived from the mea-
sured data and, in some cases,
derived from several sets of data.
With respect to extracting useful
information from measured data,
the Dynamic Signal Analyzer rep-
resents one of the most powerful
measurement and analysis tools
available to the control systems
engineer.

The DSA’s major contributions
toward analyzing data center
around three major functions:
waveform math, curve fitting
and coherence.  The following
sections briefly describe each
function and present typical
applications.

3-1: Waveform Math

Waveform math provides the abil-
ity to use standard math operators
such as +, -, × and ÷ between two
displayed data traces, or perform
any of the other math functions
shown in Table 2-1 on individual
traces.  Waveform math therefore
allows many of the control system
calculations which have histori-
cally been done graphically, with
plotted data, to be performed
within the analyzer.  This not only
reduces calculation times, but
also preserves the full resolution
and accuracy of the original data.
The following examples present
only a few of the many possible
applications for the waveform
math function.

A very straightforward applica-
tion of waveform math is the
extraction of the normalized value
of maximum overshoot from a
step response measurement.
The left half of Figure 2-5 shows a
measured step response with a
Y-axis marker positioned on the
steady-state value.  Using wave-
form math, the display can be
normalized by simply specifying
the ÷ operator and entering the
response’s steady-state value.
The normalized value of maxi-
mum overshoot can then be read
directly from the X-axis marker
as shown in the right-half of
Figure 2-5.

Chapter 3:
Analyze
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Figure 2-5:
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Using the normalized display, the
settling time can also be quickly
evaluated.  The upper and lower
boundaries relative to the steady-
state value can be clearly marked
by simply programming the Y-axis
markers to those values (i.e., for a
restriction of ± 5% of final value,
the markers can be set to 1.05 and
0.95).  The X-axis marker can then
be used to display the settling
time, as shown in Figure 2-6.
The information shown on the
display of the DSA, including
trace, display grid and annotation,
can then be sent directly to a
digital plotter to provide hardcopy
documentation.

The DSA’s waveform math
function can also be used with
frequency domain data to execute
much more complex calculations.
For example, two sets of fre-
quency response data represent-
ing the forward gain path and
feedback path of a system could
be quickly combined to predict
the system’s open-loop frequency
response.

Combining frequency responses
can be accomplished by simply
displaying one set of frequency
response data in one display trace
and a second set of frequency
response data in the other display
trace.  The operator then selects
an active trace, the multiply op-
erator and the second operand
(in this case the nonactive display
trace)1.  The result of the calcula-
tion is then displayed in the active
trace, as shown in Figure 2-7.

Figure 2-7:

Using waveform
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frequency

response data.
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1 The order in which the waveform math
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between DSAs.
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Figure 2-8:
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The resultant frequency response
can then be presented in virtually
any desired scale and in one
of many display formats.  For
example, the derived frequency
response can be displayed in a
Bode plot, as shown in Figure
2-8A, to allow the gain margin,
phase margin and open-loop
bandwidth to be quickly read
from the X-axis markers.  The
frequency response can then be
displayed on a Nyquist plot, as
shown in Figure 2-8B, to provide
a quick check of the system’s
absolute stability.

Since either display trace may
contain either current measure-
ment data, calculated data, or
data recalled from a mass storage
device (such as a magnetic disc
or tape drive), waveform math
can be used to combine many
frequency response data sets.
This capability could be used to
predict the frequency response
of a system from a library of
previously stored component
frequency response data.

FREQ RESP

Phase

0.0

-360

FxdXY 1.76  Log Hz OPEN-LOOP FREQ RESP 200

FREQ RESP

dB

20.0

-60.0

FxdXY 1.76 Log Hz 200

Nyquist

FREQ RESP

Imag

2.0

FxdXY -2.57  Real OPEN-LOOP FREQ RESP 2.57

-2.0

/Div
785
m

A. Bode plot

B. Nyquist plot



38

Figure 2-9:
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Waveform math also makes it
possible to easily calculate the
open-loop frequency response of
a system from a closed-loop mea-
surement.  Typically, a stimulus
signal is injected into the loop
and, when using FFT analysis1,
the frequency response between
the stimulus signal S and the
response to the stimulus signal
at the point Y is measured as
shown in Figure 2-9.  The open-
loop frequency response of the
system can then be calculated by
evaluating the equation:

open-loop frequency response =

where T(jω) is the measured
frequency response Y(jω )/S(jω).

This equation can be easily
evaluated using either a series of
waveform math calculations or by
using the single waveform math
operator T/(1 - T) as shown in
Figure 2-10.

3-2: Curve Fitting

Curve fitting is a function which
estimates an equation whose
solution, when plotted, will be
identical to the measured fre-
quency response.  Depending on
the curve fitter available with a
given DSA, the derived equation
may be expressed to the operator
in one of three formats: a table of
poles and zeros, a table of poles
and residues (i.e., partial fraction
expansion form), or a ratio of
polynomials.

Advanced DSAs are usually
equipped with one of two curve
fitters, either a basic single-
degree-of-freedom (SDOF) curve
fitter or a multiple-degree-of-free-
dom (MDOF) curve fitter. SDOF
curve fitters provide pole/residue
information for each resonance
identified by the operator, as
shown in Figure 2-11A.  MDOF
curve fitters represent a more
versatile generation of curve

fitters which can automatically
process an entire spectrum; using
up to 40 poles and 40 zeros in the
estimation process (see Figure
2-11B).  The latter curve fitters
are typically accompanied by a
synthesis capability which allows
the pole/zero information to be
quickly converted to a pole/resi-
due format or a polynomial for-
mat as shown in Figure 2-12.

For extracting information from
measured data, the curve fitting
function is an exceptionally pow-
erful analysis tool.  Its applica-
tions, however, lie mostly in the
area of modeling and design and
are discussed in chapters 4 and 5,
in Part Two, respectively.

1 When using an FFT analyzer to derive
the open-loop frequency response of a
closed-loop system, the ratio Y(jω)/S(jω)

or Z(jω)/S(jω) is measured rather than
Y(jω)/Z(jω) (the ratio commonly
measured with frequency response
analyzers) to prevent a bias error from
degrading the calculation.  The bias error
can be avoided and is typically not a
significant factor when using SFA analysis.

T(jω)

1 - T(jω)
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Figure 2-11:
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to analytical

equations.
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=

A. Using an SDOF curve fitter to

evaluate the frequency, damping

and residue of each resonance in

the displayed frequency response.

Curve fit data is accumulated in the

Frequency and Damping and Modal

Residues tables.

B. Using an MDOF curve fitter to evaluate

the poles and zeros associated with the

displayed frequency response, up to 40

poles can be evaluated in one analysis.
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Figure 2-12:

Converting

pole/zero data

from the curve

fitter to

pole/residue

and polynomial

formats via the

frequency

response

synthesis table

conversion

function.

Curve Fit
Poles And Zeros

POLES   5 ZEROS   2

1 -74.6323 -79.9162 ±j 2.43186k
2 -119.071 ±j 1.99714k
3 -103.437 ±j 4.00214k

Time delay= 0.0 s  Gain= 1.02E+9  Scale= 1.0

Synthesis
Polynomials

NUMERATOR   2 DENOMINATOR   5

1 5.92032M 4.788E + 15
2 159.832 64.50E + 12
3 1.0 6.144E + 09
4 20.1131M
5 519.648
6 1.0

Time delay= 0.0 s  Gain= 1.02E+9  Scale= 1.0

Synthesis
Poles And Residues

POLES   5 RESIDUES   2

1 -74.6323 94.3714
2 -119.071 ±j 1.99714k -20.4463 ±j 2.01105
3 -103.437 ±j 4.00214k -26.7395 ±j 584.067m

Time delay= 0.0 s  Gain= 1.0      Scale= 1.0

Synthesis
Poles And Zeros

POLES   5 ZEROS   2

1 -74.6323 -79.9162 ±j 2.43186k
2 -119.071 ±j 1.99714k
3 -103.437 ±j 4.00214k

Time delay= 0.0 s  Gain= 1.02E+9  Scale= 1.0

Convert
Table

Fit
Synth
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Figure 2-13:

Using the

noncoherent

power spectrum

of the response

to monitor

known periodic

disturbances in

the control loop.
Z(j )ω

+R(j )ω

U(j )ω

ΣG1 G2
C(j )ω+

Σ
Y(j )ω

S(j )ω

Channel 1

Channel 2

Signal Source
(Random Noise)Disturbance

Signals from
Fan Vibration, etc.

Error Signal Amp
Head Position
Actuator

Head PositionHead Position
Reference
Track
on Disk

100 Avg   50%Ovlp     Hann

dB

-20.0

FxdXY 20 Log Hz REFERENCE SPECTRUM 1.6k

-180

/Div
20.0

FREQ RESP

41.5 Hz — Cooling Fan Vibration

50 Hz — Offcenter Reference Track

60 Hz — Power Supply Ripple

A. Measurement

setup used to

measure the

frequency response

Y(jωωωωω)/S(jωωωωω) of

a disk drive

read/write head

positioning servo.

B. Noncoherent

power spectrum

derived from

Y(jωωωωω)/S(jωωωωω)

measurement and

the associated

coherence data.

Note that the error

signal caused by an

offcenter reference

track appears as a

noncoherent signal

at 50 Hz.
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3-3: Coherence

The coherence function is a
statistical quantity whose
dimensionless values represent
the fraction of system output
power directly related to the
input.  Values of coherence are
used in two primary applications:
1) as a measure of the quality of a
frequency response measurement
and 2) to discriminate between
those response signals which are
directly related to (coherent with)
the stimulus signal and those
response signals which are not
directly related to (not coherent
with) the stimulus signal.

When more than one average is
taken per measurement point, the
coherence function produces a
value from 0.0 to 1.0 for each
point.  (For example, when using
SFA, a value of coherence will be
produced for each step in the
sweep if the analyzer is pro-
grammed to average two or more
measurements per step.) A coher-
ence value of 1 indicates that all
of the output power (response) is
coherent with the input power
(stimulus) but not necessarily a
result of the input power.  A co-
herence value of 0 indicates that
virtually none of the output power
is coherent with the input power.

Since a low value of coherence
indicates that only a small per-
centage of the response is directly
related to the stimulus, it is rea-
sonable to assume that the corre-
sponding measurement data may
not accurately reflect the transfer
of energy through the tested de-
vice.  In this respect, the coher-
ence function acts as a qualitative
tool which can be used to verify
the general quality or credibility
of a measurement.  Typical
causes of low coherence include
very poor signal-to-noise ratios,
the presence of noncoherent sig-
nals generated within the tested
device or, when using FFT analy-
sis, leakage due to improper win-
dow selection or insufficient time
record length1.

Coherence can also be used to
separate the output power spec-
trum into two power spectra: the
coherent power spectrum which
represents the output power
directly related to the input and
the noncoherent power spectrum
which represents the output
power not related to the input.

Both the coherent and non-
coherent power spectra have
been used in several interesting
applications.  One example is the
use of the noncoherent power
spectrum by a disc drive manufac-
turer to monitor the disturbance
signals within the read/write head
positioning servo.  By using a ran-
dom stimulus signal, the periodic
signals within the control loop
(such as those caused by cooling
fan vibration, power supply ripple
bleeding into the control loop or
an off-centered reference track on
the disc) appear in the response
as noncoherent signals.  By corre-
lating the known characteristic
frequencies of these signals with
the spectral components of the
noncoherent power spectrum, the
amplitudes of these noncoherent
signals were effectively moni-
tored, providing more information
about the overall health of the
positioning system.  A simplified
drawing of the measurement
setup and an actual plot of the
noncoherent power spectrum are
shown in Figure 2-13.

1 Complete definitions of leakage, window
functions and time records are available in
Hewlett-Packard Application Note 243,
The Fundamentals of Signal Analysis.
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Since all of the data needed to
calculate the noncoherent power
spectrum is provided with each
frequency response measurement,
it can be provided without in-
creasing measurement time.
The ability to increase the
information obtained from each
measurement can be especially
valuable in situations where test-
ing time is considered a valuable
commodity, such as production
line testing.  A copy of a produc-
tion test report dumped directly
to a digital plotter by a DSA is
shown in Figure 2-14.

The coherent and noncoherent
power spectra mentioned above
can easily be obtained by using
waveform math to calculate the
following formulas:

where: coherence spectrum

refers to the collective set of
coherence values which exist
when more than one average is
taken and (1 – coherence spec-

trum) implies the subtraction of
each value of coherence in the
coherence spectrum from 1.

The output power spectrum,
like the coherence function, is
a normal by-product of a DSA’s
frequency response calculations
and can be viewed at any time.

More applications for the coher-
ence function (as well as a de-
tailed definition) are provided in
Hewlett-Packard Application Note
245-2, Measuring the Coherence

Function with the HP 3582A

Spectrum Analyzer.

Model: the process of transform-
ing the observed characteristics
of some device or process into
theoretical representations con-
sistent with the analysis/design
technique being used.

This definition, when applied to
classical control theory, generally
implies the creation of equations
which accurately predict the
action or function of some device
in the frequency or time domains.
Since most design work is done
in the frequency domain, the
modeling process can further be
generalized as the development
of frequency domain equations,
typically in a pole/zero format,
which accurately predict a
device’s frequency response.

Chapter 4:
Model

4-1: Curve Fitting Applied to

the Modelling Process

As an aid in accomplishing this
task, the MDOF curve fitter
offered with high performance
DSAs represents one of the most
powerful tools ever offered by a
test instrument.

By simply displaying a measured
frequency response and activating
the MDOF curve fitter, the DSA
automatically provides an esti-
mate of the s-plane poles and
zeros and the gain required to
produce the displayed response,
as shown in Figure 2-15.

The use of a curve fitter to
extract pole/zero information
from a measured frequency
response represents a significant
advancement over the graphic
techniques commonly used to
derive pole/zero information.  The
curve fitter has the advantage of
utilizing the full frequency and
amplitude resolution of the mea-
sured data and, in many cases,
provides the pole/zero informa-
tion in the time normally required
to obtain and prepare hardcopy
plots for graphic interpretation.

coherent power spectrum =

(output power spectrum) × (coherence spectrum)

noncoherent power spectrum =

(output power spectrum) × (1 – coherence spectrum)
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Figure 2-14:

A production

test report

showing the

data provided

from a

measurement

made on an

operating

closed-loop

servo system.

Figure 2-15:

Using an MDOF

curve fitter to

estimate the

pole/zero

locations and

gain from

frequency

response data. FREQ RESP
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Figure 2-16:

CURVE FIT
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A. Block diagram of

position control

system with

unknown transfer

function for motor

and pre-amp.

B. Curve fitting the measured fre-

quency response of the motor and pre-

amp to produce an estimate of the

associated transfer function (poles,

zeros and gain).  The upper/lower

display format is used after the fit to

compare the measured frequency

response with the frequency response

of the estimated transfer function.
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Figure 2-16:

(cont.)

Amongst other applications, the
pole/zero data obtained from fre-
quency response measurements
can be used to either verify the
poles and zeros used in an exist-
ing analytical model or create an
initial model of a device with
unknown characteristics.  An
example of the latter application
is illustrated in Figure 2-16.  In
this example, a transfer function
is generated for a combination
armature controlled motor and

preamplifier (of a position control
system) whose specifications,
such as motor inertia and forward
gain, are unknown.

To obtain the motor/preamps
transfer function, the frequency
response of the motor/preamp
is first measured using a DSA
equipped with a MDOF curve
fitter.  The curve fitter is then
activated resulting in a table of
poles and zeros.  The pole/zero

information is automatically syn-
thesized to provide a frequency
response which can be compared
with the measured frequency re-
sponse, as shown in Figure 2-16B.
The pole/zero data is then used to
generate a transfer function of the
motor/preamp as illustrated in
Figure 2-16C.  The derived trans-
fer function can now be added to
the system block diagram to com-
plete the system model, as shown
in Figure 2-16D.
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Curve Fit
Poles And Zeros

POLES   3 ZEROS   1

1 -599.83m -4.56721
2 -3.27977 ±j 4.19772

Time delay= 0.0 s  Gain= 10.83   Scale= 1.0

-10.83 (s + 4.57)
(s +0.6)(s + 3.28 + j4.2)(s + 3.28 - j4.2) = M(s)

C. Producing the

transfer function

of the motor and

the pre-amp from

pole/zero table

generated by DSA’s

MDOF curve fitter.

D. Completed

block diagram.
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4-2: Frequency Response

Synthesis Applied to the

Modeling Process

Another useful modeling tool
provided with advanced DSAs is
the frequency response synthesis
function (commonly referred to
as the synthesis function).  DSAs
equipped with this function allow
analytical equations (e.g., transfer
functions) to be entered directly
into the analyzer.  The DSA then
calculates and displays the fre-
quency response associated with
the transfer function, as shown
in Figure 2-17.

Equations may be entered in
one of three formats: pole/zero,
pole/residue (i.e., partial fraction
expansion), or ratio of polynomi-
als in s.  In addition to providing a
conversion function for transfer-
ring data from one format to
another, high performance DSAs
also provide direct transfer of
data between the synthesis and
curve fitting functions.

In the modeling process, the
synthesis function is commonly
used in conjunction with the
curve fitter.  For example, if the
curve fitter produces more de-
tailed information than required
for a given application, the pole/
zero data can be transferred to
the synthesis function where in-
significant poles and zeros can be
deleted.  The frequency response
of the remaining poles and zeros
can then be synthesized and com-
pared to the measured frequency
response.  This allows the engi-
neer to verify that the remaining
poles and zeros sufficiently model
the measured frequency response.

Another use of the synthesis func-
tion utilizes modeling information
to optimize the initial testing of
systems.  By synthesizing the
frequency response of a system
which has never been tested (i.e.
the model has been developed
from data sheet information or
initial design parameters), an ini-
tial estimate of the system’s fre-
quency response can be obtained.
This information can then be used
to estimate the transducers and
stimulus levels required to prop-
erly test the system, reducing test
time and, in many cases, prevent-

ing damage to the system or
device being tested.

These examples illustrate only a
few of the applications in which
the DSA’s precision measurement
hardware and computational
power contribute to the modeling
process.  By providing analysis
tools such as frequency response
synthesis and curve fitting, the
DSA provides a new level of sup-
port for meeting the complex as
well as the routine challenges of
modeling today’s control systems.

Figure 2-17:

Synthesizing

the frequency

response of a

control system

using the DSA’s

frequency

response

synthesis

function.

Synthesis
Poles And Zeros

POLES   6 ZEROS   2

1 0.0 -2.4 ±j  4.6
2 -300.0m
3 -2.3 ±j   4.4
4 -3.2 ±j  15.6

Time delay= 0.0 s  Gain= 794.3   Scale= 1.0
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Design: determining the combi-
nation of physical or theoretical
components or parameters that
will produce a desired action or
result.

The design process, as defined
above, occurs throughout the
development of control systems.
It begins with the initial concep-
tion of a system and becomes one
of an unpredictable sequence of
development processes which ul-
timately result in a refined, fully
operational control system.  Typi-
cally, the purpose of most design
work (after conceiving the initial
system) is to generate modifica-
tions to the initial system which
will allow it to comply with the
original design goals or specifica-
tions.  Modifications can range
from simple changes in compo-
nent values to the design and ad-
dition of complex compensation
networks.

5-1: Applying Frequency

Response Synthesis, Waveform

Math and Curve Fitting to the

Design Process

As a design tool, DSAs offer sev-
eral data processing functions
which can aid the engineer in
choosing combinations of compo-
nents which will accomplish a de-
sired task.  For example, the
frequency response synthesis
function1 can be used to predict
the frequency response of com-
pensation networks before they
are actually built.  The waveform
math function2 can then be used
to predict the effects of a synthe-
sized compensation network on
a system’s open-loop frequency
response or predict the system’s
new closed-loop frequency re-
sponse.  It can even be used to
estimate the step or impulse re-
sponse of the modified system
before the compensation network
is built.

To illustrate the use of the DSA’s
data processing functions in the
design process, the following case
study examines the development
of a simple compensation
network for a motor speed
controller.

Chapter 5:
Design

Initial measurements on the
motor speed control were taken
with the control loop closed and
the system’s open-loop gain set
approximately 8 dB below the de-
sired operating level.  The closed-
loop measurement indicated a
sharp resonance at approximately
87.5 Hz, as shown in Figure 2-18A.
The open-loop frequency re-
sponse was then calculated from
the measurement of Y(jω)/S(jω)

using the T/(1 - T) calculation, as
shown in Figure 2-18B.

The magnitude of the resonance
at 87.5 Hz indicated that an 8 dB
increase in the gain would cause
the open-loop gain at 90 Hz to
exceed 0 dB with the phase less
than -180 degrees, creating an
unstable operating condition, as
shown in Figure 2-19.  Therefore,
to achieve the desired increase in
the system’s open-loop gain, a
compensation network was added
to the system to reduce the level
of the 87.5 Hz resonance.

The compensation network, in
this case a two-pole low-pass
filter, was developed by entering
an initial estimate of the pole
locations, gain and delay into
the pole/zero table of the DSA’s
frequency response synthesis
function.  The synthesized fre-
quency response of the low-pass
filter was then displayed on
the CRT of the DSA, as shown
in Figure 2-20.

1 See section 4-2 for a brief description of
the frequency response synthesis function.

2 See section 3-1 for a brief description of
the waveform math function.
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Figure 2-18:

Closed-loop

measurement

and calculated

open-loop

frequency

response

showing

resonance

at 87.5 Hz.

Figure 2-19:

Using markers

to predict the

effect of

increasing the

open-loop gain

by 8 dB.
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an unstable condition.
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Synthesis
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The frequency response of the
speed control system and the
synthesized frequency response
of the low-pass filter were then
displayed adjacently, as shown
in Figure 2-21.  By displaying
both frequency responses in this
fashion, the low-pass filter pole
locations which provided the best
trade-off between level rejection
and phase shift could quickly
be determined.

Figure 2-21:

Synthesized

frequency

response of

low pass filter

(upper trace)

and calculated

open-loop

frequency

response of

motor speed

controller (lower

trace).

Figure 2-20:

Using the

synthesis function

to calculate the

frequency

response of

a low pass filter.
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Figure 2-23:

Measured frequency

response of prototype

(upper trace) compared

to synthesized frequency

response (lower trace).

Figure 2-22:

Using waveform math

to calculate the effect

of the low-pass filter on

the open-loop frequency

response.
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Figure 2-24:

Comparison of

the measured

(upper trace)

and the predicted

(lower trace)

open-loop

frequency

response with

low-pass filter

installed.

Figure 2-25:

Measured

open-loop

frequency

response with

low-pass filter

installed and

gain increased

by 8 dB.

To verify the visual approxima-
tion, the synthesized frequency
response of the low-pass filter
was combined with the open-loop
frequency response of the speed
control system using waveform
math, as shown in Figure 2-22.

Using the information provided by
the pole/zero table and a passive
filter design guide, the component
values for the low-pass filter were
determined and a prototype filter
constructed.  The frequency re-
sponse of the prototype was then
measured and compared to the
synthesized frequency response,
as shown in Figure 2-23.

With the low-pass filter installed
in the forward signal path of the
motor speed control, the open-
loop frequency response was
again measured and compared to
the predicted response, as shown
in Figure 2-24.  Finally, the gain
of the speed control was raised
by 8 dB to provide the desired
performance while maintaining
reasonable gain margin and phase
margin, as shown in Figure 2-25.
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In this example, the low-pass
filter provided enough compensa-
tion to achieve the desired system
performance.  However, for more
demanding applications, a lag-
lead network could be added to
the system to further improve the
system’s performance.

When building compensation
networks such as the lag-lead
network mentioned above, the
DSA’s curve fitter can be used
to locate the dominant poles and
zeros of a system’s open-loop
frequency response, as shown in
Figure 2-26.  This information can
then be used with design tools
such as a root locus plot to select
the most advantageous position
for the poles and zeros of the
compensation network.

The DSA’s curve fitter function
can also be used to suggest the
location of a compensation
network’s poles and zeros.  For
example, the pole/zero model of a
“perfect” compensation network
can be derived using a combina-
tion of the frequency response
synthesis, waveform math and
curve fitting functions.  First, the

Figure 2-26:
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sation network needed to achieve
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the system.  By curve fitting this
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5-2: Using Display Formats

Other Than the Bode Plot

By providing a wide choice of
coordinate formats, advanced
DSAs allow the operator to
observe frequency response data
in the display format which best
conforms with the design tech-
nique being used.  For example,
the open-loop frequency response
of the motor speed controller can
be displayed in either the Nichols
or Nyquist formats as shown in
Figure 2-27.

This rapid exchange of data
between display formats not only
allows the engineer to capitalize
on the advantages of each display
format, it also serves as a conve-
nient way to bridge communica-
tion gaps between engineers
accustomed to different display
formats.

Figure 2-27:
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By combining the computational
power of the microprocessor with
the accuracy of precision mea-
surement hardware, the Dynamic
Signal Analyzer has expanded its
functional scope to include contri-
butions in virtually all aspects of
control system development.

In the area of testing, the DSA has
provided the facilities for making
both time domain and frequency
domain measurements.  Using
either the time capture or time
throughput measurement modes,
the DSA can store large quantities
of time domain data.  The data
can then be either displayed in
the time domain or routed to the
FFT processor and transformed
into frequency domain data.

For making frequency domain
measurements, the DSA provides
both FFT analysis and Swept Fou-
rier Analysis.  This combination
of measurement capabilities al-
lows the DSA to analyze a control
system’s response to a wide range
of stimulus signals.  This capabil-
ity can often be used to gain
greater insight into the operation
of a control system as well as
minimize measurement times.

Chapter 6:
Summary

In addition to providing multiple
measurement capabilities, the
DSA utilizes the power of the
microprocessor to provide a host
of automated measurement aids
capable of optimizing measure-
ment conditions and rejecting
undesirable data.

In the area of analysis, the DSA
provides functions such as coher-
ence, waveform math, curve
fitting and advanced display
formatting as tools for reducing
raw data to valuable information.

In the areas of modeling and
design, the DSA’s frequency
response synthesis and advanced
analysis functions can be utilized
in the development of accurate
system models and effective
system designs.

Perhaps the DSA’s most signifi-
cant contribution is that it has
brought both advanced measure-
ment capabilities and powerful
analysis tools together in a single
instrument.  This consolidation of
development tools allows the DSA
to provide a great deal of valuable
information — not just data.
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Bandwidth.  The interval sepa-
rating two frequencies between
which both the gain and the phase
difference (of sinusoidal output
referred to sinusoidal input)
remain within specified limits.

Bode diagram.  A plot of log-gain
and phase-angle values on a
log-frequency base, for an ele-
ment transfer function G(jω), a
loop transfer function GH(jω).
The generalized Bode diagram
comprises similar plots of func-
tions of the complex variable
s = σ + jω.

Characteristic equation.  Of a
feedback control system, the rela-
tion formed by equating to zero
the denominator of a rationalized
transfer function of a closed loop.

Closed loop (feedback loop).
A signal path which includes a
forward path, a feedback path
and a summing point, and forms
a closed circuit.

Compensation.  A modifying or
supplementary action (also, the
effect of such action) intended
to improve performance with
respect to some specified
characteristic.

Control system.  A system in
which deliberate guidance or
manipulation is used to achieve a
prescribed value of a variable.
NOTE: It may be subdivided into a
controlling system and a controlled
system.

Control system, automatic.  A
control system which operates
without human intervention.

Appendicies
Appendix A: Glossary

Error constant.  In a feedback
control system, the real number K
by which the nth derivative of the
reference input signal is divided
to give the resulting nth compo-
nent of the actuating signal.

Frequency, damped.  The
apparent frequency of a damped
oscillatory time response of a
system resulting from a
non-oscillatory stimulus.

Frequency, gain crossover.  On
a Bode diagram of the loop trans-
fer function of a system, the fre-
quency at which the gain becomes
unity (and its decibel value zero)

Frequency, phase crossover.

Of a loop transfer function the
frequency at which the phase
angle reaches ± 180 degrees.

Frequency response.  In a linear
system, the frequency-dependent
relation in both gain and phase
difference, between steady-state
sinusoidal inputs and the resulting
steady-state sinusoidal outputs.

Function describing.  Of a
nonlinear element under periodic
input, a transfer function based
solely on the fundamental,
ignoring other frequencies.

Function, loop transfer.  For a
closed loop, the transfer function
obtained by taking the ratio of the
Laplace transform of the return
signal to the Laplace transform of
its corresponding error signal.

Function, output transfer.

For a closed loop, the transfer
function obtained by taking the
ratio of the Laplace transform of
the output signal to the Laplace
transform of the input signal.

Control system, feedback.  A
control system which operates to
achieve prescribed relationships
between selected system vari-
ables by comparing functions
of these variables and using the
difference to effect control.

Control system, open-loop.

One which does not utilize
feedback of measured variables.

Critically damped.  Describing a
linear second-order system which
is damped just enough to prevent
any overshoot of the output
following an abrupt stimulus.
See also damping.

Critical point.  (1) In a Nyquist
diagram for a control system, the
bound of stability for the locus
of the loop transfer function
GH(jω), the (-1, jω)point. (2) In
a Nichols chart, the bound of
stability for the GH(jω) plot;
the intersection of GH = 1 with
GH = – 180 degrees.

Damping.  (1) (noun) The pro-
gressive reduction or suppression
of the oscillation of a system.
(2) (adj.) Pertaining to or
productive of damping.

Decibel.  In control usage, a
logarithmic scale unit relating a
variable x (e.g., angular; displace-
ment) to a specified reference
level x,  dB = 20 log x/x

0
 .

NOTE: The relation is strictly applicable
only where the ratio x/x

0
 is the square root

of the power ratio P/P
0
, as is true for

voltage or current ratios.  The value
dB = 10 log P/P

0
 originated in telephone

engineering, and is approximately
equivalent to the old “transmission unit”.

Dither.  A useful oscillation of
small amplitude introduced to
overcome the effects of friction,
hysteresis or clogging.
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Function, return transfer.

For a closed loop, the transfer
function obtained by taking the
ratio of the Laplace transform of
the return signal to the Laplace
transform of its corresponding
input signal.

Function, system transfer.

The transfer function obtained by
taking the ratio of the Laplace
transform of the signal corre-
sponding to the ultimately
controlled variable to the
Laplace transform of the signal
corresponding to the command.

Function, transfer.  A math-
ematical, graphical, or tabular
statement of the influence which
a system or element has on a
signal or action compared at
input and at output terminals.

Gain (magnitude ratio).  For
a linear system or element, the ra-
tio of the magnitude (amplitude)
of a steady-state sinusoidal output
relative to the causal input; the
length of a phasor from the origin
to a point of the transfer locus in
a complex plane.
NOTE: The quantity may be separated into
two factors: (1) a proportional amplifica-
tion often denoted as K which is fre-
quency-independent, and associated with a
dimensioned scale factor relating the units
of input and output; (2) a dimensionless
factor often denoted as G(jω) which is
frequency-dependent.  Frequency,
conditions of operation, and conditions of
measurement must be specified A loop
gain characteristic is a plot of log gain vs.
log frequency.  In nonlinear systems, gains
are often amplitude-dependent; see also
transfer function.

Gain characteristic, loop.  Of
a closed loop, the magnitude of
the loop transfer function for
real frequencies.

Gain, closed-loop.  The gain of a
closed-loop system, expressed as
the ratio of output to input.

Gain, loop.  The absolute
magnitude of the loop gain
characteristic at a specified
frequency.

Gain margin.  Of the loop
transfer function for a stable
feedback system, the reciprocal
of the gain at the frequency at
which the phase angle reaches
minus 180 degrees.
NOTE: Gain margin, sometimes expressed
in decibels is a convenient way of
estimating relative stability by Nyquist,
Bode, or Nichols diagrams, for systems
with similar gain and phase characteristics.
In a conditionally stable feedback system,
gain margin is understood to refer to the
highest frequency at which the phase angle
is minus 180 degrees.

M-peak.  Of a closed loop, the
maximum value of the magnitude
of the return transfer function
for real frequencies, the value at
zero frequency being normalized
to unity.

Nichols chart (Nichols diagram).
A plot showing magnitude con-
tours and phase contours of the
return transfer function referred
to ordinates of logarithmic loop
gain and to abscises of loop
phase angle.

Nyquist diagram.  A polar plot
of the loop transfer function.
NOTE: The “inverse Nyquist diagram” is a
polar plot of the reciprocal function.  The
generalized Nyquist diagram comprises
plots of the loop transfer function of the
complex variables, where s = σ + jω and
σ and ω are arbitrary constants,
including zero.

Overdamped.  Damped suffi-
ciently to prevent any oscillation
of the output following a step or
impulse input.
NOTE: For a linear second-order system
the roots of the characteristic equation are
real and unequal.

Phase angle, loop.  Of a closed
loop, the value of the loop phase
characteristic at a specified
frequency.

Phase characteristic, loop.

Of a closed loop, the phase angle
of the loop transfer function for
real frequencies.
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Phase margin.  Of the loop trans-
fer function for a stable feedback
control system, 180 deg. minus
the absolute value of the loop
phase angle at a frequency where
the loop gain is unity.
NOTE: Phase margin is a convenient way
of expressing relative stability of a linear
system under parameter changes in
Nyquist, Bode or Nichols diagrams.  In
a conditionally stable feedback control
system where the loop gain becomes
unity at several frequencies, the term is
understood to apply to the value of phase
margin at the highest of these frequencies.

Pole.  (1) Of a transfer function
in the complex variable s, a value
of s which makes the function
infinite.  (2) The corresponding
point in the s-plane.
NOTE: If the same value is repeated n
times, it is called a pole of nth order; if it
occurs only once, a simple pole.

Resonance.  Of a system or ele-
ment, a condition evidenced by
large oscillatory amplitude which
results when a small amplitude of
a periodic input has a frequency
approaching one of the natural
frequencies of the driven system.
NOTE: In a feedback control system, this
occurs near the stability limit.

Response, steady-state.  Of a
stable system or element, that
part of the time response remain-
ing after transients have expired.
NOTE: The term steady-state may also
be applied to any of the forced response
terms: for example, “steady-state
sine-forced response”.

Root locus.  For a closed loop
whose characteristic equation is
KG(s)H(s)+1 =0, a plot in the
s-plane of all those values of s
which make G(s)H(s) a negative
real number; those points which
make the loop transfer function
KG(s)H(s) = -1 are roots.
NOTE: The locus is conveniently sketched
from the factored form of KG(s)H(s); each
branch starts at a pole of that function,
with K = 0.  With increasing K, the locus
proceeds along its several branches toward
a zero of that function and, often asymp-
totic to one of several equiangular radial
lines, toward infinity.  Roots lie at points
on the locus for which (1) the sum of
the phase angles of component G(s)H(s)

vectors totals 180 deg., and for which
(2) 1/K =|G(s)H(s)|.  Critical damping of
the closed loop occurs when the locus
breaks away from the real axis; instability
when it crosses the imaginary axis.

Servomechanism.  An automatic
feedback control system in which
the controlled variable is me-
chanical position or any of its
time derivatives.

Servomechanism type number.
In control systems in which the
loop transfer function is:

K(1 + a
1
s + a

2
s2 + . . . + a

i
si)

Sn(1 + b
1
s + b

2
s2 + . . . + b

k
sk)

where K, a, b etc. are constant
coefficients, the value of the
integer n.

Stability.  For a control system,
the property that sufficiently
bounded input or initial state per-
turbation result in bounded state
or output perturbations.  Time,
rise.  The time required for the
output of a system (other than
first-order) to make the change
from a small specified percentage
(often 5 or 10) of the steady-state
increment to a large specified
percentage (often 90 or 95),
either before overshoot or in
the absence of overshoot.
NOTE: If the term is unqualified, response
o a unit-step stimulus is understood,
otherwise the pattern and magnitude of
the stimulus should be specified.

Time, settling (correction time).
The time required following the
initiation of a specified stimulus
to a linear system for the output
to enter and remain within a
specified narrow band centered
on its steady-state value.
NOTE: The stimulus may be a step,
impulse, ramp, parabola, or sinusoid.
For a step or impulse, the band is often
specified as  ±2%.  For nonlinear behavior,
both magnitude and pattern of the stimulus
should be specified.

Underdamped.  Damped insuffi-
ciently to prevent oscillation of
the output following an abrupt
stimulus.

Zero.  (1) of a transfer function in
the complex variable s, a value of
s which makes the function zero.
(2) The corresponding point in the
s-plane.
NOTE: If the same value is repeated n
times, it is called a zero of nth order; if it
occurs only once, a simple zero.
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